Copper(I) and Copper(II) Complexes of Tetramethyldiphosphinedisulfide. I. Structural Characterization of the Dinuclear, Molecular Complex of Copper(I) Chloride

F. A. COTTON, B. A. FRENZ, D. L. HUNTER and Z. C. MESTER Department of Chemistry, Texas A & M University, College Station, Texas 77843, U.S.A. Received February 2, 1974

The potentially bidentate ligand, tetramethyldiphosphinedisulfide $(CH_3)_4P_2S_2$, has been found to react with copper(II) chloride dihydrate, $CuCl_2 \cdot 2H_2O$, in ethanol at room temperature to vield, as the major product, a white compound. This is apparently the same substance reported in 1965 by Meek and Nicpon and formulated by them as $[Cu(S_2P_2Me_4)_2][CuCl_2]$. An X-ray crystallographic investigation has shown that the white substance is a molecular, dinuclear compound (which may, of course, dissociate or otherwise rearrange in solution) in which each Cu(I) is surrounded by a tetrahedral array of three sulfur atoms and one chlorine atom. The $Me_4P_2S_2$ ligands have a gauche rotational configuration and each one chelates to one Cu(I) atom to form a five-membered ring. The $Me_4P_2S_4CuCl$ halves of the molecule are joined by two bridging sulfur atoms, one from each half, thus forming a planar Cu_2S_2 rhombic ring. The entire molecule has as its only symmetry element an inversion center. The principal crystallographic data are: space group, $P2_1/n$; a = 7.998(1) Å; b = 9.688(2) Å; c = 14.473(3) Å; $\beta = 104.90(1)^{\circ}; V = 1083.7(3) \text{ Å}^3; Z = 2.$

Introduction

Despite the fact that, on the one hand, sulfur as a ligand atom is of major, widespread importance and, on the other, phosphine oxides, and P=O groups in other compounds, are also important ligands, the literature on complexes containing P=S groups as ligands is remarkably sparse. Indeed the first coordination compound containing such a ligand, Ph₃PS, was reported only in 1960.¹ In that limited investigation only the palladium complex, PdCl₂(Ph₃PS)₂, its Ph₃PSe analog and SnCl₄(Ph₃PS)₂, as well as attempts to prepare SnCl₄(Ph₃PS)₂, as well as attempts to prepare Ph₃PS complexes of BF₃, Co²⁺, Hg²⁺ and Cu²⁺ were unsuccessful. This work implied that the prospects for obtaining an extensive series of phosphine sulfide (or selenide) complexes seemed doubtful.

Subsequently, however, there have been many further reports.2-11 Of special interest here are certain results of Meek and Nicpon.^{12,13} These workers have shown that Me₃PS is a better ligand than Ph₃PS. They then extended their studies to the potentially bidentate ligands, Me₂P(S)–P(S)Me₂ and its tetraethyl analog. They found these diphosphine disulfides to be good ligands for Cu(I); these complexes were prepared by reactions of the ligands with Cu(II) compounds, specifically, Cu(ClO₄)₂ and CuCl₂. From the perchlorate, compounds with the composition (R₄P₂S₂)₂CuClO₄ were obtained. Conductance data led Meek and Nicpon to conclude that these compounds are uni-univalent electrolytes. Thus, the ability of the R₄P₂S₂ ligand to function as a bidentate chelating ligand was indicated. The product obtained with Me₄P₂S₂ and CuCl₂, of composition (Me₄P₂S₂)CuCl, was formulated as [(Me₄P₂S₂)₂Cu][CuCl₂] on the basis of electrolytic conductance data.

Aside from a general interest in the ligand properties of the R₄P₂S₂ molecules, our interest in the particular compound (Me₄P₂S₂)CuCl was aroused because of the plausible suggestion that it might contain the CuCl2⁻ ion. Although this linear ion has often been postulated, there is only one report of direct evidence for its existence14 and an additional documented example would have been of interest. An attempt was therefore made to prepare the compound in crystalline form and ascertain its structure by X-ray crystallography. That attempt was successful and is described in this paper. In the course of preparing the substance in a form suitable for crystallographic investigation we observed that in addition to the white substance a brown product could be obtained in small quantities and in crystalline form. This is probably the same compound mentioned by Nicpon¹³ although we were unaware of this unpublished observation until much later when a copy of Nicpon's doctoral thesis was made available to us by Professor Meek. That substance was also identified and structurally characterized, as described in the following paper.15

Experimental

Preparation

Copper(II) chloride dihydrate (0.5 g) was dissolved in 70 ml absolute ethanol. Separately, an equimolar solution of Me₄P₂S₂ (0.55 g) in 50 ml tetrahydrofuran plus 20 ml CH₂Cl₂ was prepared. These solutions were poured into the two sides of a U-tube having a medium porosity sintered glass disk at its midpoint. The solutions were able to mix slowly, at 22°C, through the disk. After about an hour a mixture of brown crystals and white crystals had formed on the disk, the white crystals being far more abundant. Further observation showed that when the brown substance remained in contact with the reaction mixture, it was converted into a white material in a few hours. Crystals of both the brown and the white substances were separated by filtration, dried by brief pumping and mounted in capillaries for X-ray study.

Collection of X-ray Data

A crystal of dimensions $0.010 \times 0.0047 \times 0.050$ cm was selected and mounted on a Syntex P1 computercontrolled, four-circle diffractometer, equipped with a graphite-crystal monochromator in the incident beam. The unit cell was found to be monoclinic and leastsquares refinement of fifteen centered reflections produced the orientation matrix for data collection and gave the following unit cell dimensions: a = 7.998(1)Å; b = 9.688(2)Å; c = 14.473(3)Å; β = 104.90(1)°; V = 1083.7(3) Å³. Systematic absences subsequently evident in the set of intensity data indicated that the space group is $P2_1/n$, a nonstandard setting of $P2_1/c$. The calculated density is 1.747 gcm^{-3} if the cell is assumed to contain four formula units, (CH₃)₄P₂S₂CuCl; this agrees well with a density of 1.752 (± 0.005) gcm⁻¹ measured by flotation.

Intensity data were collected in the range $0^{\circ} < 2\Theta \leq 55^{\circ}$ using Mo K α radiation. The Θ -2 Θ scan technique with a variable scan rate from 4–24°/min was used. The scan range was from 2 Θ (Mo K α_1) –0.9° to 2 Θ (Mo K α_2) + 0.9°. Additional details about data collection have been described elsewhere.¹⁶ In order to check the stability of the crystal and the X-ray diffractometer, four reflections were selected as standards and their intensities were recorded periodically. No significant variations in these intensities were observed.

A total of 3242 reflections was collected and the usual data reduction procedures¹⁷ were applied. The parameter p, used in the calculation of standard deviations on intensities $[\sigma(F_o^2)]$, was assigned the value 0.06. Although the linear absorption coefficient was not especially high ($\mu = 29.24 \text{ cm}^{-1}$ for Mo K α radiation), in order to get the most accurate atomic parameters, absorption corrections have been made. The faces of the crystal were identified by the indices 010, 101, 101, 101, 101, 111 and 111. A numerical

correction gave transmission factors varying from 73% to 91% with an average of 85%.

Solution and Refinement of the Structure¹⁷

A Patterson function was calculated and the copper atom was located on the Harker plane of 1/2–2X; 1/2; 1/2–2Z. The structure was solved by the usual combination of least-squares refinements and difference Fourier syntheses. In the least-squares refinements only those 1488 reflections were used for which $F_o^2 > 3\sigma(F_o^2)$. The quantity minimized was $\Sigma w(|F_o| - |F_c|)^2$, where $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes and the weight w is $4F_o^2/\sigma^2(F_o^2)$. Scattering factors were taken from the International Tables¹⁸ and anomalous dispersion corrections¹⁹ were included for all atoms except carbon and hydrogen atoms.

After all nonhydrogen atoms in the asymmetric unit, *i.e.*, Cu, Cl, 2S, 2P and 4C atoms, had been located, anisotropic refinement was carried to convergence, which resulted in the following discrepancy indices: $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma ||F_o|| = 0.065$ and $R_2 = [\Sigma w (|F_o| - |F_c|)^2 / \Sigma w F_o^2]^{1/2} = 0.11$. A difference electron density map then revealed some of the hydrogen atoms, namely two on C(1), two on C(2), one on C(3) and one on C(4). The positions of the remaining six hydrogen atoms were calculated assuming tetrahedral geometry about the carbon atoms and C–H bond lengths of 0.95 Å.

Two more cycles of refinement were carried out in which all nonhydrogen atoms were refined anisotropically and the positional coordinates of the hydrogen atoms were refined, while the temperature parameter for each hydrogen atom was fixed at an isotropic value of 5.0Å². This lead to the discrepancy indices $R_1 = 0.041$ and $R_2 = 0.052$. Finally, two cycles, in which the isotropic thermal parameters for the hydrogen atoms were also allowed to vary, were carried out; in these cycles there was a total of 139 variable parameters so that the ratio of data to variables was slightly greater than 10. The final R values were: $R_1 =$ 0.040 and $R_2 = 0.051$. For only three parameter pairs (all on the chlorine atom) did the correlation coefficients slightly exceed 0.5. Parameter changes in the final cycle were all less than 0.25 times the esd of the parameter.

A final difference map, calculated using all the reflections included in the refinement, had no peak with a density in excess of 0.5 eÅ⁻³ with the exception of one maximum with a density of 1.7 eÅ⁻³ at a distance of 0.92Å from the Cu atom and trans to a trigonal sulfur atom. This peak had roughly twice the density of peaks due to the hydrogen atoms that were found. However, on a difference map calculated using only the 126 reflections for which $\lambda^{-1} \sin \Theta < 0.250$ this peak disappeared while the peaks due to the hydrogen atoms remained. We conclude that this peak is an artifact.

The standard deviation in an observation of unit weight was 1.11.

The F_o and the final F_c values are presented in Table I. The final refined positional and thermal parameters are listed in Table II.

TABLE I. The Observed and Final Calculated Structure Factor Amplitudes Listed as $10F_{o}|$ and $10F_{c}|$, in Electrons.

10000000000000000000000000000000000000	
	ビー・レービー ビービー・トーー レー・レーン かかか かか アンクラン クイアクライ クイククラン アクプライン クシン マー・マー・マー・マー・マー・マー・マー・マー・マー・マー・マー・マー・マー・マ
#24566 #244 597168 #7#7728528287878787878787878787878787878771207778277782	中的特殊是有利用的。我们也能是有有利用的。我们们就是这些不是有不能的,我们也能能能是不是有利用的。""你们就是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不
27253722799327936574322544428537838374642343462137946454645464213584775466544468214	、「キャント・キャント」をいたいたちゃうにはないたいです。そうないないので、いたいたいたいないで、「ないたいたいたいたいたいで、」、「マント・キャント・キャント・シント・シント・シント・シント・シント・シント・シント・シント・シント・シ
	"我不不了??????????" 不是是是有有有有有有有,有有有有有,有有有有有有。 化分子 医马尔曼马尔 医马尔马耳 网络加加斯 网络帕拉斯 网络帕拉斯 计计算机 计计算法 化分子子 化分子子 化分子子 化分子子 化分子子 化分子子 化分子子 化分子
\$519\$ETTERATEDECSTATEEEEE	,我们有有效的。""我们是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不
	2.2.10101011111111111111111111111111111
***************************************	それがおかった、ちゃちょうであった。そうな、そうな、ないない、ないない、ないない、ないない、ないないない、ないないない、ないないない、ないないない、ないないない、ないないない、ないないない、ないない、ない ひょうさい ひょうさい ひょうちょう しょうしょう しょうしょう しょうしょう しょうしょう しゅうしょう しゅうしょう
	「おおおからしたい」では、「おおいたい」では、「おいたい」では、「おいたい」では、「おいたい」、
	# 12055394512777328527455134565513421951255755512554552544520451248126576545274552745527455276552712111
	*1011111111111111111111111111111111111
1293555359775795519511951577555552777557527553253757525752527522512575522955452955474574574574574572572224	**************************************
•••••• •••••••••••••••••••••••••••••••	
541544534534549991356452549755539754 ÷2536345454742555382465799145743939991211295555555555555555555555555555	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩
201122210122101211220000000000000000000	1112141 11274 1127
	11.1123131477777777777777777777777777777777
, , , , , , , , , , , , , , , , , , ,	ボース・コース コース・コース スカイ カラ スタイ スタイ スタス スケン スケン しんしんしょう ちょうちょうちょうちょう しゅうちょく ちょうしょう ちょうしょう ちょう きいばいたい いいせい イン・サイト しょうさい しょうしょう ちょう うんだい ひといせい イート・スティー スケン
2073022022224222222222222222222222222222	。
***************************************	2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	●月日月11日11日11日11日11日11日11日。 建沙土 メスタメング スタスタン アンマングライング ション・ション かいかい かんしん しゅん かんせん かんせい シング・ビオー ひがた Martin Andre
***************************************	**************************************
	Rear State
	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩
	1999 1997 1997 1997 1997 1997 1997 1997
1999-00-00-00-00-00-00-00-00-00-00-00-00-	

The Forn	n of the Thermal	Ellipsoid is exp[-	$-(\beta_{11}k^2 + \beta_{22}k^2 + \beta_{22}k^2)$	and $Dev \beta_{33}l^2 + 2\beta_{12}$	Id the transformed for the second se	23kl)]				
Atom	x	Ŷ	Z	B iso- tropic	β11	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cu	-0.0295(1)	0.08567(8)	0.09733(6)		0.0340(3)	0.00583(5)	0.00450(4)	0.0019(1)	0.00244(8)	0.00049(5)
ū	-0.1073(3)	0.3029(2)	0.1204(1)		0.0373(5)	0.0061(1)	0.0069(1)	0.0032(2)	0.0100(2)	0.0008(1)
S1	0.0053(2)	-0.0434(1)	0.2353(1)		0.0209(3)	0.0057(1)	0.00283(7)	-0.0018(1)	0.0006(1)	-0.00029(8)
S2	-0.2195(2)	-0.0580(1)	-0.0256(1)		0.0120(1)	0.0059(1)	0.00322(7)	0.0000(1)	0.0003(1)	0.00122(8)
P1	-0.0263(2)	-0.2314(1)	0.18115(9)		0.0096(2)	0.0050(1)	0.00241(6)	0.0006(1)	0.0008(1)	0.00042(7)
P2	-0.2455(2)	-0.2237(1)	0.05140(9)		0.0091(2)	0.0047(1)	0.00282(6)	-0.0003(1)	0.0006(1)	0.00022(7)
CI	-0.0822(9)	-0.3578(7)	0.2586(5)		0.018(1)	0.0070(7)	0.0037(3)	-0.0013(8)	0.0018(6)	0.0014(4)
C2	0.1526(9)	-0.2968(8)	0.1437(6)		0.014(1)	0.0122(9)	0.0053(4)	0.0048(9)	0.0032(6)	0.0007(5)
C	-0.250(1)	-0.3827(7)	-0.0122(5)		0.026(2)	0.0066(7)	0.0035(3)	-0.0035(9)	0.0001(6)	-0.0009(4)
C4	-0.4339(9)	-0.2156(9)	0.0966(6)		0.011(1)	0.014(1)	0.0059(4)	(6)6000.0	0.0023(6)	0.0024(6)
ΗI	-0.119(8)	-0.430(6)	0.228(4)	3(1)						
H2	-0.176(8)	-0.324(6)	0.277(4)	3(1)						
H3	0.019(9)	-0.368(7)	0.313(5)	4(1)						
H4	0.180(9)	-0.260(8)	0.092(5)	5(2)						
H5	0.148(9)	-0.391(9)	0.137(5)	6(2)						
H6	0.262(9)	-0.277(7)	0.187(6)	6(2)						
H7	-0.143(9)	-0.386(7)	-0.044(4)	4(1)						
H8	-0.345(9)	-0.386(7)	-0.052(5)	5(2)						
6H	-0.259(8)	-0.457(6)	0.029(4)	4(1)						
H10	-0.417(9)	-0.137(9)	0.139(6)	7(2)						
H11	-0.444(9)	-0.285(7)	0.130(5)	4(1)						
H12	-0.518(9)	-0.211(7)	0.045(5)	5(2)						
	-	-								

^a Numbers in parentheses are estimated standard deviations in the last significant digit.

Results

The structure is made up of dinuclear molecules, one of which is shown in Fig. 1. These dinuclear units lie on crystallographic inversion centers; there are two of them in each unit cell. Table III presents interatomic distances and Table IV gives bond angles. Table V gives the equations of some mean planes and the dihedral angles between them.

Figure 1. The structure of the centrosymmetric dinuclear molecule showing the atom numbering scheme. Atoms with primed labels are related by the inversion center to those with the corresponding unprimed numbers. Each atom is represented by its thermal ellipsoid, scaled to enclose 50% of the electron density.

TABLE III. Bond Distances, Angstroms.^a

		Average Value
2.244(2)		
2.311(2)		
2.453(2)		
2.486(2)		
1.973(2)		
1.995(2)		
2.217(2)		
3.406(2)		
1.772(7)	5	
1.792(6)		1 707(2)
1.790(6)	ì	1.787(3)
1.793(7)	J	
0.84(6)		
0.92(6)		
0.98(7)		
0.91(7)		
0.91(9)		
0.96(8)		0.02(2)
1.07(7)	Ì	0.92(2)
0.82(9)		
0.96(6)		
0.96(8)		
0.86(6)		
0.86(8)	,	
	$\begin{array}{c} 2.244(2)\\ 2.311(2)\\ 2.453(2)\\ 2.486(2)\\ 1.973(2)\\ 1.995(2)\\ 2.217(2)\\ 3.406(2)\\ 1.772(7)\\ 1.792(6)\\ 1.790(6)\\ 1.790(6)\\ 1.793(7)\\ 0.84(6)\\ 0.92(6)\\ 0.92(6)\\ 0.98(7)\\ 0.91(7)\\ 0.91(7)\\ 0.91(9)\\ 0.96(8)\\ 1.07(7)\\ 0.82(9)\\ 0.96(6)\\ 0.96(8)\\ 0.86(6)\\ 0.86(6)\\ 0.86(8)\end{array}$	$\begin{array}{c} 2.244(2) \\ 2.311(2) \\ 2.453(2) \\ 2.486(2) \\ 1.973(2) \\ 1.995(2) \\ 2.217(2) \\ 3.406(2) \\ 1.772(7) \\ 1.792(6) \\ 1.790(6) \\ 1.793(7) \\ 0.84(6) \\ 0.92(6) \\ 0.98(7) \\ 0.91(7) \\ 0.91(7) \\ 0.91(7) \\ 0.91(9) \\ 0.96(8) \\ 1.07(7) \\ 0.82(9) \\ 0.96(6) \\ 0.96(8) \\ 0.86(6) \\ 0.86(6) \\ 0.86(8) \end{array}$

^a Numbers in parentheses are estimated standard deviations in the last significant digit.

TABLE IV. I	3ond a	ngles,	Degrees. ^a
-------------	--------	--------	-----------------------

C1CuS1	110.81(7)
C1CuS2	119.76(8)
C1CuS2'	116.48(7)
\$1-Cu-\$2	103.52(6)
\$1-Cu-\$2'	111.79(7)
\$2-Cu-\$2'	92.82(5)
P1–S1–Cu	100,48(7)
CuS2Cu'	87.18(5)
P2S2Cu	100.71(7)
P2-S2-Cu'	110.87(7)
S1-P1-P2	107.32(8)
C1-P1-S1	114.2(3)
C1P1P2	106.4(2)
C1P1C2	107.4(4)
C2P1S1	114.8(3)
C2-P1-P2	106.1(3)
P1P2S2	109.09(8)
C3P2P1	108.2(3)
C3P2-S2	113.4(2)
C3P2C4	108.5(4)
C4-P2-P1	104.4(3)
C4-P2-S2	112.8(3)
H1C1P1	110(4)
H2-C1-P1	107(4)
H3C1P1	106(4)
H1C1H2	104(5)
H1-C1-H3	117(5)
H2C1H3	112(5)
H4-C2-P1	120(5)
H5-C2-P1	112(5)
H6-C1-P1	114(5)
H4-C2-H5	109(7)
H4-C2-H6	95(6)
Н5-С2-Н6	106(7)
H7-C3-P2	110(4)
H8C3P2	107(6)
H9-C3-P2	108(4)
H7–C3–H8	113(6)
Н7-С3-Н9	117(5)
Н8-С3-Н9	102(7)
H10-C4-P2	106(5)
H11–C4–P2	113(4)
H12–C4–P2	103(5)
H10-C4-H11	106(6)
H10-C4-H12	117(7)
H11-C4-H12	111(7)

^a Numbers in parentheses are estimated standard deviations in the last significant digit.

Discussion

The $Me_4P_2S_2$ molecules in this compound serve as chelating, bidentate ligands. They form puckered five-membered rings including the copper atoms.

Each copper(I) atom achieves a coordination number of four with distorted tetrahedral geometry of the

Plane	Atoms	Equati	on	Dihedral Angle
1	Cu, S1, S2, P1, P2	-7.269	$P_{\mathbf{X}} + 2.716\mathbf{y} + 7.554\mathbf{z} - 1.3089 = 0$	1 and 2 11.7° 1 and 3 6.1° 1 and 4 1015°
2	Cu, S1, S2	-7.006	x + 4.306y + 5.797z - 1.1397 = 0	2 and 3 17.3° 2 and 4 113.2°
3	S1, S2, P1, P2	-7.455	5x + 1.707y + 7.744z - 1.5244 = 0	3 and 4 96.6°
4	Cu, S2, Cu', S2'	1.217x	x - 7.782y + 7.218z = 0	-
В	Distances (Å) of Atoms fro	m Least Square	s Planes	
Plane 1		Plane 4		
Cu	-0.127	S 1	0.185	
S1	0.313	S2	-0.186	
S 2	-0.064	P1	-0.322	
P1	-0.379	P2	0.323	
P2	0.257	CL	0.482	
C1	1.207	C2	-2.062	
C1	0.271	C3	-0.411	
C2	-2.145	C4	2.096	
C3	-0.626			
C4	1.996			

TABLE V. Least Squares Planes.^a

^a x, y and z are fractional monoclinic coordinates.

surrounding ligands. This is possible because one sulfur atom in each $Me_4P_2S_2$ molecules serves as a bridge between two copper atoms. The bonds from the copper atoms to the bridging sulfur atoms are considerably longer (~0.15 Å) than those to the nonbridging sulfur atoms.

The central four-membered ring consisting of alternating Cu and S atoms is rigorously planar because of the crystallographic inversion center. There is a slight distortion from full rhombic (C_{2h}) symmetry because the Cu-S(2) and Cu-S(2)' are not quite equal.

Acknowledgement

We thank Troels LaCour for some very timely advice and The Robert A. Welch Foundation for financial support under Grant No. A494.

References

- 1 E. Bannister and F.A. Cotton, J. Chem. Soc., 1959 (1960).
- 2 J. Philip and C. Curran, Abstracts, 147th National Meeting of the American Chemical Society, Philadelphia, Pa., April 1964, p. 28L.
- 3 W. Hieber and K. Kaiser, Zeit. Anorg. Allgem. Chem., 358, 271 (1968); 362, 169 (1968). The compounds

 $[(Me_4P_2S_2)M(NO)_2]Br$ (M = Fe, Co), characterized mainly by elemental analyses, are reported and the presence of chelates ring postulated.

- 4 H. Teichmann, *Angew. Chem.*, 77, 809 (1965). This paper reports the preparation of ten stable $SnX_4(SPR_3)_2$ complexes (X = Cl, Br; R = mostly alkyl) as well as $Me_4P_2S_2$ and $Et_4P_2S_2$ adducts.
- 5 K. Baker and G. W. A. Fowles, J. Less Common Metals, 8, 47 (1965). The complexes $TiX_4(Et_4P_2S_2)$, X = Cl, Br, are reported.
- 6 D. A. Wheatland, C. H. Clapp and R. W. Waldron, *Inorg. Chem.*, 11, 2340 (1972). A number of complexes of R₂P(S)-X-P(S)R'₂ ligands, presumably containing sixmembered chelate rings, are reported.
- 7 P. Nicpon and D.W. Meek, *Chem. Comm.*, 1966, 398. Complexes of Ph₃PSe, Ph₃AsS and a few related ligands.
- 8 P. Nicpon and D.W. Meek, *Inorg. Chem.*, *6*, 145 (1967). Chelating thiophosphine complexes.
- 9 W.E. Slinkard and D.W. Meek, *Inorg. Chem.*, 8, 1811 (1969). Complexes of (Mc₂N)₃PS.
- 10 J. A. Tiethof, A. T. Hetey, P. E. Nipcon and D. W. Meek, *Inorg. Nucl. Chem. Letters*, 8, 841 (1972). Three-coordinate Cu(I) complexes of Me₃PS and other R₃PS ligands.
- 11 J.A. Tiethof, J.K. Stalick and D.W. Meek, *Inorg. Chem.*, *12*, 1170 (1973). Crystal structure of [(Me₃PS)CuCl]₃.
- 12 D. W. Meek and P. E. Nicpon, J. Am. Chem. Soc., 87, 4951 (1965).
- 13 P.E. Nicpon, Doctoral Dissertation, The Ohio State University, 1966. We are grateful to Professor Devon W. Meek for making the relevant portions of this thesis available to us and for stimulating discussions.

- 14 M.G. Newton, H.D. Caughman and R.C. Taylor, Chem. Comm., 1970, 1227.
- 15 F.A. Cotton, B.A. Frenz, D.L. Hunter and Z.C. Mester, Inorg. Chim. Acta, 7, 119 (1974).
- 16 F.A. Cotton, B.A. Frenz, G. Deganello and A. Shaver, J. Organometal. Chem., 50, 227 (1973).
- 17 Computer programs used in data reduction, refinement, and interpretation of the structure were as follows: DATA-RED by Frenz for data reduction; FOURIER by Robinson and Dellaca, based on FORDAP by Zalkin, the leastsquares program NUCLS by Doedens and Ibers based on

Busing and Levy's ORFLS program; a local modification of Baur's SADIAN program for calculating atomic distances and angles; PERFACT by Frenz for analysing structure factors; ORTEP by Johnson for illustrations; the function and error program ORFFE by Busing, Martin and Levy as modified by Brown, Johnson and Thiessen; and LIST by Snyder for listing the data.

- D.T. Cromer and J.T. Waber, "International Tables for X-ray Crystallography," Volume IV, in preparation.
 D.T. Cromer and D. Liberman, J. Chem. Phys., 53, 1891
- (1970).